
Package ‘dearseq’
February 18, 2026

Type Package

Title Differential Expression Analysis for RNA-seq data through a
robust variance component test

Version 1.22.0

Date 2023-06-16

Depends R (>= 3.6.0)

Imports CompQuadForm, dplyr, ggplot2, KernSmooth, magrittr,
matrixStats, methods, patchwork, parallel, pbapply, reshape2,
rlang, scattermore, stats, statmod, survey, tibble, viridisLite

Suggests Biobase, BiocManager, BiocSet, edgeR, DESeq2, GEOquery, GSA,
knitr, limma, readxl, rmarkdown, S4Vectors,
SummarizedExperiment, testthat, covr

Description Differential Expression Analysis RNA-seq data with variance
component score test accounting for data heteroscedasticity through
precision weights. Perform both gene-wise and gene set analyses,
and can deal with repeated or longitudinal data. Methods are
detailed in: i) Agniel D & Hejblum BP (2017) Variance component score
test for time-course gene set analysis of longitudinal RNA-seq
data, Biostatistics, 18(4):589-604 ; and ii) Gauthier M, Agniel D,
Thiébaut R & Hejblum BP (2020) dearseq: a variance component
score test for RNA-Seq differential analysis that effectively
controls the false discovery rate, NAR Genomics and Bioinformatics,
2(4):lqaa093.

License GPL-2 | file LICENSE

biocViews BiomedicalInformatics, CellBiology, DifferentialExpression,
DNASeq, GeneExpression, Genetics, GeneSetEnrichment,
ImmunoOncology, KEGG, Regression, RNASeq, Sequencing,
SystemsBiology, TimeCourse, Transcription, Transcriptomics

BugReports https://github.com/borishejblum/dearseq/issues

Encoding UTF-8

RoxygenNote 7.2.3

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/dearseq

git_branch RELEASE_3_22

git_last_commit f876c6d

1

https://github.com/borishejblum/dearseq/issues

2 dearseq-package

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-02-18

Author Denis Agniel [aut],
Boris P. Hejblum [aut, cre] (ORCID:
<https://orcid.org/0000-0003-0646-452X>),

Marine Gauthier [aut],
Mélanie Huchon [ctb]

Maintainer Boris P. Hejblum <boris.hejblum@u-bordeaux.fr>

Contents
dearseq-package . 2
baduel_5gs . 3
dear_seq . 5
dgsa_seq . 9
PBT_gmt . 14
permPvals . 15
plot.dearseq . 16
plot_hist_pvals . 16
plot_ord_pvals . 17
plot_weights . 18
spaghettiPlot1GS . 19
sp_weights . 20
summary.dearseq . 22
vc_score . 23
vc_score_h . 24
vc_score_h_perm . 26
vc_score_perm . 28
vc_test_asym . 30
vc_test_perm . 32
voom_weights . 34
%^% . 35

Index 36

dearseq-package dearseq: Differential Expression Analysis for RNA-seq data through a
robust variance component test

Description

Differential Expression Analysis RNA-seq data with variance component score test accounting for
data heteroscedasticity through precision weights. Perform both gene-wise and gene set analyses,
and can deal with repeated or longitudinal data. Methods are detailed in: i) Agniel D & Hejblum BP
(2017) Variance component score test for time-course gene set analysis of longitudinal RNA-seq
data, Biostatistics, 18(4):589-604 ; and ii) Gauthier M, Agniel D, Thiébaut R & Hejblum BP (2020)
dearseq: a variance component score test for RNA-Seq differential analysis that effectively controls
the false discovery rate, NAR Genomics and Bioinformatics, 2(4):lqaa093.

https://orcid.org/0000-0003-0646-452X

baduel_5gs 3

Details

Analysis of RNA-seq data with variance component score test accounting for data heteroscedasticity
through precision weights. Performs gene-wise analysis as well as gene set analysis, including for
complex experimental designs such as longitudinal data.

Package: dearseq
Type: Package
Version: 1.13.3
Date: 2023-06-16
License: GPL-2

The two main functions of the dearseq package are dear_seq and dgsa_seq.

Author(s)

Maintainer: Boris P. Hejblum <boris.hejblum@u-bordeaux.fr> (ORCID)

Authors:

• Denis Agniel <denis.agniel@gmail.com>

• Marine Gauthier <marine.gauthier@u-bordeaux.fr>

Other contributors:

• Mélanie Huchon <melanie.huchon@u-bordeaux.fr> [contributor]

References

Agniel D & Hejblum BP (2017). Variance component score test for time-course gene set analysis
of longitudinal RNA-seq data, Biostatistics, 18(4):589-604. DOI: 10.1093/biostatistics/kxx005.
arXiv:1605.02351.

Gauthier M, Agniel D, Thiébaut R & Hejblum BP (2020). dearseq: a variance component score test
for RNA-Seq differential analysis that effectively controls the false discovery rate, NAR Genomics
and Bioinformatics, 2(4):lqaa093. DOI: 10.1093/nargab/lqaa093. DOI: 10.1101/635714

See Also

Useful links:

• Report bugs at https://github.com/borishejblum/dearseq/issues

baduel_5gs Small portion of RNA-seq data from plant physiology study.

Description

A subsample of the RNA-seq data from Baduel et al. studying Arabidopsis Arenosa physiology.

Usage

data(baduel_5gs)

http://www.gnu.org/licenses/gpl-2.0.txt
https://orcid.org/0000-0003-0646-452X
https://doi.org/10.1093/biostatistics/kxx005
https://arxiv.org/abs/1605.02351
https://doi.org/10.1093/nargab/lqaa093
https://www.biorxiv.org/content/10.1101/635714
https://github.com/borishejblum/dearseq/issues

4 baduel_5gs

Format

3 objects

• design: a design matrix for the 48 measured samples, containing the following variables:

– SampleName corresponding column names from expr_norm_corr

– Intercept an intercept variable
– Population a factor identifying the plant population
– Age_weeks numeric age of the plant at sampling time (in weeks)
– Replicate a purely technical variable as replicates are not from the same individual over

weeks. Should not be used in analysis.
– Vernalized a logical variable indicating whether the plant had undergone vernalization

(exposition to cold and short day photoperiods)
– Vernalized a binary variable indicating whether the plant belonged to the KA population
– AgeWeeks_Population interaction variable between the AgeWeeks and Population vari-

ables
– AgeWeeks_Vernalized interaction variable between the AgeWeeks and Vernalized vari-

ables
– Vernalized_Population interaction variable between the Vernalized and Population

variables
– AgeWeeks_Vernalized_Population interaction variable between the AgeWeeks, Vernalized

and Population variables

• baduel_gmt: a gmt object containing 5 gene sets of interest (see GSA.read.gmt), which is
simply a list with the 3 following components:

– genesets: a list of n gene identifiers vectors composing eachgene set (each gene set is
represented as the vector of the gene identifiers composing it)

– geneset.names: a vector of length n containing the gene set names (i.e. gene sets iden-
tifiers)

– geneset.descriptions: a vector of length n containing gene set descriptions (e.g. textual
information on their biological function)

• expr_norm_corr: a numeric matrix containing the normalized batch corrected expression for
the 2454 genes included in either of the 5 gene sets of interests

Source

http://www.ncbi.nlm.nih.gov/bioproject/PRJNA312410

References

Baduel P, Arnold B, Weisman CM, Hunter B & Bomblies K (2016). Habitat-Associated Life
History and Stress-Tolerance Variation in Arabidopsis Arenosa. Plant Physiology, 171(1):437-51.
10.1104/pp.15.01875.

Agniel D & Hejblum BP (2017). Variance component score test for time-course gene set analysis of
longitudinal RNA-seq data, Biostatistics, 18(4):589-604. 10.1093/biostatistics/kxx005. arXiv:1605.02351.

Examples

if(interactive()){
data('baduel_5gs')

set.seed(54321)

http://www.ncbi.nlm.nih.gov/bioproject/PRJNA312410
https://doi.org/10.1104/pp.15.01875
https://doi.org/10.1093/biostatistics/kxx005
https://arxiv.org/abs/1605.02351

dear_seq 5

KAvsTBG <- dgsa_seq(exprmat=log2(expr_norm_corr+1),
covariates=apply(as.matrix(design[,

c('Intercept', 'Vernalized', 'AgeWeeks', 'Vernalized_Population',
'AgeWeeks_Population'), drop=FALSE]), 2, as.numeric),

variables2test =
as.matrix(design[, c('PopulationKA'), drop=FALSE]),

genesets=baduel_gmt$genesets[c(3,5)],
which_test = 'permutation', which_weights = 'loclin',
n_perm=1000, preprocessed = TRUE)

set.seed(54321)
Cold <- dgsa_seq(exprmat=log2(expr_norm_corr+1),

covariates=apply(as.matrix(design[,
c('Intercept', 'AgeWeeks', 'PopulationKA', 'AgeWeeks_Population'),
drop=FALSE]), 2, as.numeric),

variables2test=as.matrix(design[, c('Vernalized',
'Vernalized_Population')]),
genesets=baduel_gmt$genesets[c(3,5)],
which_test = 'permutation', which_weights = 'loclin',
n_perm=1000, preprocessed = TRUE)

}

dear_seq Differential expression analyis of RNA-seq data through a variance
component test

Description

Wrapper function for gene-by-gene association testing of RNA-seq data

Usage

dear_seq(
exprmat = NULL,
object = NULL,
covariates = NULL,
variables2test,
sample_group = NULL,
weights_var2test_condi = (which_test != "permutation"),
cov_variables2test_eff = NULL,
which_test = c("permutation", "asymptotic"),
which_weights = c("loclin", "voom", "none"),
n_perm = 1000,
progressbar = TRUE,
parallel_comp = TRUE,
nb_cores = parallel::detectCores(logical = FALSE) - 1,
preprocessed = FALSE,
gene_based_weights = FALSE,
bw = "nrd",
kernel = c("gaussian", "epanechnikov", "rectangular", "triangular", "biweight",

"tricube", "cosine", "optcosine"),

6 dear_seq

transform = TRUE,
padjust_methods = c("BH", "BY", "holm", "hochberg", "hommel", "bonferroni"),
lowess_span = 0.5,
R = NULL,
adaptive = TRUE,
max_adaptive = 64000,
homogen_traj = FALSE,
na.rm_dearseq = TRUE

)

Arguments

exprmat a numeric matrix of size G x n containing the raw RNA-seq counts or prepro-
cessed expressions from n samples for G genes. Default is NULL, in which case
object must not be NULL.

object an object that can be either a SummarizedExperiment, an ExpressionSet, a
DESeqDataSet, or a DGEList. Default is NULL, in which case exprmat must not
be NULL.

covariates • If exprmat is specified as a matrix: then covariates must be a numeric
matrix of size n x p containing the model covariates for n samples (design
matrix). Usually, its first column is the intercept (full of 1s).

• If object is specified: then covariates must be a character vector of
length p containing the colnames of the design matrix given in object.

If covariates is NULL (the default), then it is just the intercept.

variables2test • If exprmat is specified as a matrix: a numeric design matrix of size n x K
containing the K variables to be tested.

• If object is specified: then variables2test must be a character vector of
length K containing the colnames of the design matrix given in object.

sample_group a vector of length n indicating whether the samples should be grouped (e.g.
paired samples or longitudinal data). Coerced to be a factor. Default is NULL
in which case no grouping is performed.

weights_var2test_condi

a logical flag indicating whether heteroscedasticity weights computation should
be conditional on both the variables to be tested variables2test and on the
covariates, or on covariates alone. Default is TRUE for the asymptotic test
(in which case conditional means are estimated conditionally on both variables2test
and covariates), and FALSE for the permutation test (in which case conditional
means are estimated conditionally on only the covariates).

cov_variables2test_eff

a matrix of size K x K containing the covariance matrix of the K random effects.
Only used if homogen_traj is FALSE. Default assume diagonal correlation ma-
trix, i.e. independence of random effects.

which_test a character string indicating which method to use to approximate the variance
component score test, either 'permutation' or 'asymptotic'. Default is 'permutation'.

which_weights a character string indicating which method to use to estimate the mean-variance
relationship weights. Possibilities are 'loclin', 'voom' or 'none' (in which
case no weighting is performed). Default is 'loclin'. See sp_weights and
voom_weights for details.

n_perm the number of perturbations. Default is 1000

dear_seq 7

progressbar logical indicating wether a progressBar should be displayed when computing
permutations (only in interactive mode).

parallel_comp a logical flag indicating whether parallel computation should be enabled. Only
Linux and MacOS are supported, this is ignored on Windows. Default is TRUE.

nb_cores an integer indicating the number of cores to be used when parallel_comp is
TRUE. Default is parallel::detectCores(logical=FALSE) - 1.

preprocessed a logical flag indicating whether the expression data have already been prepro-
cessed (e.g. log2 transformed). Default is FALSE, in which case y is assumed to
contain raw counts and is normalized into log(counts) per million.

gene_based_weights

a logical flag used for 'loclin' weights, indicating whether to estimate weights
at the gene-level, or rather at the observation-level. Default is FALSE, which is
what it should be for gene-wise analysis.

bw a character string indicating the smoothing bandwidth selection method to use.
See bandwidth for details. Possible values are 'ucv', 'SJ', 'bcv', 'nrd' or
'nrd0'.

kernel a character string indicating which kernel should be used. Possibilities are
'gaussian', 'epanechnikov', 'rectangular', 'triangular', 'biweight',
'tricube', 'cosine', 'optcosine'. Default is 'gaussian' (NB: 'tricube'
kernel corresponds to the loess method).

transform a logical flag used for 'loclin' weights, indicating whether values should be
transformed to uniform for the purpose of local linear smoothing. This may be
helpful if tail observations are sparse and the specified bandwidth gives subop-
timal performance there. Default is TRUE.

padjust_methods

multiple testing correction method used if genesets is a list. Default is ’BH’,
i.e. Benjamini-Hochberg procedure for controlling the FDR. Other possibilities
are: 'holm', 'hochberg', 'hommel', 'bonferroni' or 'BY' (for Benjamini-
Yekutieli procedure).

lowess_span smoother span for the lowess function, between 0 and 1. This gives the pro-
portion of points in the plot which influence the smooth at each value. Larger
values give more smoothness. Only used if which_weights is 'voom'. Default
is 0.5.

R library.size (optional, important to provide if preprocessed = TRUE). Default is
NULL

adaptive a logical flag indicating whether adaptive permutation should be performed. De-
fault is TRUE

max_adaptive The maximum number of permutations considered. Default is 64000

homogen_traj a logical flag indicating whether trajectories should be considered homogeneous.
Default is FALSE in which case trajectories are not only tested for trend, but also
for heterogeneity.

na.rm_dearseq logical: should missing values in y (including NA and NaN) be omitted from the
calculations? Default is TRUE.

Value

A list with the following elements:

• which_test: a character string carrying forward the value of the ’which_test’ argument
indicating which test was perform (either ’asymptotic’ or ’permutation’).

8 dear_seq

• preprocessed: a logical flag carrying forward the value of the ’preprocessed’ argument
indicating whether the expression data were already preprocessed, or were provided as raw
counts and transformed into log-counts per million.

• n_perm: an integer carrying forward the value of the ’n_perm’ argument indicating the number
of perturbations performed (NA if asymptotic test was performed).

• genesets: carrying forward the value of the ’genesets’ argument defining the gene sets of
interest (NULL for gene-wise testing).

• pval: computed p-values. A data.frame with one raw for each each gene set, or for each gene
if genesets argument is NULL, and with 2 columns: the first one ’rawPval’ contains the raw p-
values, the second one contains the FDR adjusted p-values (according to the ’padjust_methods’
argument) and is named ’adjPval’.

References

Gauthier M, Agniel D, Thiébaut R & Hejblum BP (2020). dearseq: a variance component score test
for RNA-Seq differential analysis that effectivelycontrols the false discovery rate, NAR Genomics
and Bioinformatics, 2(4):lqaa093. DOI: 10.1093/nargab/lqaa093. DOI: 10.1101/635714

See Also

sp_weights vc_test_perm vc_test_asym p.adjust

Examples

#Monte-Carlo estimation of the proportion of DE genes over `nsims`
#simulations under the null

#number of runs
nsims <- 2 #100
res <- numeric(nsims)
for(i in 1:nsims){
n <- 1000 #number of genes
nr=5 #number of measurements per subject (grouped data)
ni=50 #number of subjects
r <- nr*ni #number of measurements
t <- matrix(rep(1:nr), ni, ncol=1, nrow=r) # the variable to be tested
sigma <- 0.5
b0 <- 1

#under the null:
b1 <- 0

#create the matrix of gene expression
y.tilde <- b0 + b1*t + rnorm(r, sd = sigma)
y <- t(matrix(rnorm(n*r, sd = sqrt(sigma*abs(y.tilde))), ncol=n, nrow=r) +

matrix(rep(y.tilde, n), ncol=n, nrow=r))

#no covariates
x <- matrix(1, ncol=1, nrow=r)

#run test
#asymptotic test with preprocessed grouped data
res_genes <- dear_seq(exprmat=y, covariates=x, variables2test=t,

sample_group=rep(1:ni, each=nr),
which_test='asymptotic',

https://doi.org/10.1093/nargab/lqaa093
https://www.biorxiv.org/content/10.1101/635714

dgsa_seq 9

which_weights='none', preprocessed=TRUE)

#proportion of raw p-values>0.05
mean(res_genes$pvals[, 'rawPval']>0.05)

#quantiles of raw p-values
quantile(res_genes$pvals[, 'rawPval'])

#proportion of raw p-values<0.05 i.e. proportion of DE genes
res[i] <- mean(res_genes$pvals[, 'rawPval']<0.05)
message(i)

}

#results
mean(res)

if(interactive()){
b0 <- 1
#under the null:
b1 <- 0

#create the matrix of gene expression
y.tilde <- b0 + b1*t + rnorm(r, sd = sigma)
y <- t(matrix(rnorm(n*r, sd = sqrt(sigma*abs(y.tilde))), ncol=n, nrow=r) +

matrix(rep(y.tilde, n), ncol=n, nrow=r))

#run test
#asymptotic test with preprocessed grouped data
res_genes <- dear_seq(exprmat=y, covariates=x, variables2test=t,

sample_group=rep(1:ni, each=nr),
which_weights='none', preprocessed=TRUE)

#results
summary(res_genes$pvals)
}

dgsa_seq Time-course Gene Set Analysis

Description

Wrapper function for performing gene set analysis of (potentially longitudinal) RNA-seq data

Usage

dgsa_seq(
exprmat = NULL,
object = NULL,
covariates = NULL,
variables2test,
weights_var2test_condi = (which_test != "permutation"),
genesets,
sample_group = NULL,
cov_variables2test_eff = NULL,

10 dgsa_seq

which_test = c("permutation", "asymptotic"),
which_weights = c("loclin", "voom", "none"),
n_perm = 1000,
progressbar = TRUE,
parallel_comp = TRUE,
nb_cores = parallel::detectCores(logical = FALSE) - 1,
preprocessed = FALSE,
gene_based_weights = TRUE,
bw = "nrd",
kernel = c("gaussian", "epanechnikov", "rectangular", "triangular", "biweight",

"tricube", "cosine", "optcosine"),
transform = TRUE,
padjust_methods = c("BH", "BY", "holm", "hochberg", "hommel", "bonferroni"),
lowess_span = 0.5,
R = NULL,
adaptive = TRUE,
max_adaptive = 64000,
homogen_traj = FALSE,
na.rm_gsaseq = TRUE,
verbose = TRUE

)

Arguments

exprmat a numeric matrix of size G x n containing the raw RNA-seq counts or prepro-
cessed expressions from n samples for G genes. Default is NULL, in which case
object must not be NULL.

object an object that can be either an SummarizedExperiment, an ExpressionSet, a
DESeqDataSet, or a DGEList. Default is NULL, in which case exprmat must not
be NULL.

covariates • If exprmat is specified as a matrix: then covariates must be a numeric
matrix of size n x p containing the model covariates for n samples (design
matrix). Usually, its first column is the intercept (full of 1s).

• If object is specified: then covariates must be a character vector of
length p containing the colnames of the design matrix given in object.

If covariates is NULL (the default), then it is just the intercept.

variables2test • If exprmat is specified as a matrix: a numeric design matrix of size n x K
containing the K variables to be tested.

• If object is specified: then variables2test must be a character vector of
length K containing the colnames of the design matrix given in object.

weights_var2test_condi

a logical flag indicating whether heteroscedasticity weights computation should
be conditional on both the variable(s) to be tested phi and on covariate(s) x, or
on x alone. Default is TRUE for the asymptotic test (in which case conditional
means are estimated conditionally on both variables2test and covariates),
and FALSE for the permutation test (in which case conditional means are esti-
mated conditionally on only the covariates).

genesets Can be either:

• a vector

• a list

dgsa_seq 11

• a BiocSet object

Can be a vector of index or subscripts that defines which rows of y constitute
the investigated gene set (when only 1 gene set is being tested).
Can also be a list of index (or rownames of y) when several gene sets are tested
at once, such as the first element of a gmt object.
Finally, can also be a BiocSet object
If NULL, then gene-wise p-values are returned.

sample_group a vector of length n indicating whether the samples should be grouped (e.g.
paired samples or longitudinal data). Coerced to be a factor. Default is NULL
in which case no grouping is performed.

cov_variables2test_eff

a matrix of size K x K containing the covariance matrix of the K random effects.
Only used if homogen_traj is FALSE. Default assume diagonal correlation ma-
trix, i.e. independence of random effects.

which_test a character string indicating which method to use to approximate the variance
component score test, either 'permutation' or 'asymptotic'. Default is 'permutation'.

which_weights a character string indicating which method to use to estimate the mean-variance
relationship weights. Possibilities are 'loclin', 'voom' or 'none' (in which
case no weighting is performed). Default is 'loclin'. See sp_weights and
voom_weights for details.

n_perm the number of perturbations. Default is 1000.

progressbar logical indicating wether a progressBar should be displayed when computing
permutations (only in interactive mode).

parallel_comp a logical flag indicating whether parallel computation should be enabled. Only
Linux and MacOS are supported, this is ignored on Windows. Default is TRUE.

nb_cores an integer indicating the number of cores to be used when parallel_comp is
TRUE. Default is parallel::detectCores(logical=FALSE) - 1.

preprocessed a logical flag indicating whether the expression data have already been prepro-
cessed (e.g. log2 transformed). Default is FALSE, in which case y is assumed to
contain raw counts and is normalized into log(counts) per million.

gene_based_weights

a logical flag used for 'loclin' weights, indicating whether to estimate weights
at the gene-level, or rather at the observation-level. Default is TRUE, and weights
are then estimated at the gene-level.

bw a character string indicating the smoothing bandwidth selection method to use.
See bandwidth for details. Possible values are 'ucv', 'SJ', 'bcv', 'nrd' or
'nrd0'

kernel a character string indicating which kernel should be used. Possibilities are
'gaussian', 'epanechnikov', 'rectangular', 'triangular', 'biweight',
'tricube', 'cosine', 'optcosine'. Default is 'gaussian' (NB: 'tricube'
kernel corresponds to the loess method).

transform a logical flag used for 'loclin' weights, indicating whether values should be
transformed to uniform for the purpose of local linear smoothing. This may be
helpful if tail observations are sparse and the specified bandwidth gives subop-
timal performance there. Default is TRUE.

padjust_methods

multiple testing correction method used if genesets is a list. Default is ’BH’,
i.e. Benjamini-Hochberg procedure for controlling the FDR. Other possibilities

12 dgsa_seq

are: 'holm', 'hochberg', 'hommel', 'bonferroni' or 'BY' (for Benjamini-
Yekutieli procedure).

lowess_span smoother span for the lowess function, between 0 and 1. This gives the pro-
portion of points in the plot which influence the smooth at each value. Larger
values give more smoothness. Only used if which_weights is 'voom'. Default
is 0.5.

R library size (optional, important to provide if preprocessed = TRUE). Default is
NULL

adaptive a logical flag indicating whether adaptive permutation should be performed. De-
fault is TRUE

max_adaptive The maximum number of permutations considered. Default is 64000

homogen_traj a logical flag indicating whether trajectories should be considered homogeneous.
Default is FALSE in which case trajectories are not only tested for trend, but also
for heterogeneity.

na.rm_gsaseq logical: should missing values in y (including NA and NaN) be omitted from the
calculations? Default is TRUE.

verbose logical: should informative messages be printed during the computation? De-
fault is TRUE.

Value

A list with the following elements:

• which_test: a character string carrying forward the value of the ’which_test’ argument
indicating which test was perform (either ’asymptotic’ or ’permutation’).

• preprocessed: a logical flag carrying forward the value of the ’preprocessed’ argument
indicating whether the expression data were already preprocessed, or were provided as raw
counts and transformed into log-counts per million.

• n_perm: an integer carrying forward the value of the ’n_perm’ argument indicating the number
of perturbations performed (NA if asymptotic test was performed).

• genesets: carrying forward the value of the ’genesets’ argument defining the gene sets of
interest (NULL for gene-wise t esting).

• pval: computed p-values. A data.frame with one raw for each each gene set, or for each gene
if genesets argument is NULL, and with 2 columns: the first one ’rawPval’ contains the raw p-
values, the second one contains the FDR adjusted p-values (according to the ’padjust_methods’
argument) and is named ’adjPval’.

References

Agniel D & Hejblum BP (2017). Variance component score test for time-course gene set analysis of
longitudinal RNA-seq data, Biostatistics, 18(4):589-604. 10.1093/biostatistics/kxx005. arXiv:1605.02351.

Law, C. W., Chen, Y., Shi, W., & Smyth, G. K. (2014). voom: Precision weights unlock linear
model analysis tools for RNA-seq read counts. Genome Biology, 15(2), R29.

See Also

sp_weights vc_test_perm vc_test_asym p.adjust

https://doi.org/10.1093/biostatistics/kxx005
https://arxiv.org/abs/1605.02351

dgsa_seq 13

Examples

nsims <- 2 #100
res_quant <- list()
for(i in 1:2){
n <- 2000#0
nr <- 3
r <- nr*20 #4*nr#100*nr
t <- matrix(rep(1:nr), r/nr, ncol=1, nrow=r)
sigma <- 0.4
b0 <- 1

#under the null:
b1 <- 0

y.tilde <- b0 + b1*t + rnorm(r, sd = sigma)
y <- t(matrix(rnorm(n*r, sd = sqrt(sigma*abs(y.tilde))), ncol=n, nrow=r) +

matrix(rep(y.tilde, n), ncol=n, nrow=r))
x <- matrix(1, ncol=1, nrow=r)

#run test
res <- dgsa_seq(exprmat = y, covariates = x, variables2test = t,

genesets=lapply(0:9, function(x){x*10+(1:10)}),
cov_variables2test_eff = matrix(1),
sample_group = rep(1:(r/nr), each=nr),
which_test='asymptotic',
which_weights='none', preprocessed=TRUE)

res_genes <- dgsa_seq(exprmat = y, covariates = x,
variables2test = cbind(t),#, rnorm(r)), #t^2
genesets = NULL,
cov_variables2test_eff = diag(1),
sample_group = rep(1:(r/nr), each=nr),
which_test = 'asymptotic',
which_weights = 'none', preprocessed = TRUE)

length(res_genes$pvals[, 'rawPval'])
quantile(res_genes$pvals[, 'rawPval'])
res_quant[[i]] <- res_genes$pvals[, 'rawPval']

}

#round(rowMeans(vapply(res_quant, FUN = quantile, FUN.VALUE = rep(1.1, 5))), 3)
#plot(density(unlist(res_quant)))
#mean(unlist(res_quant)<0.05)

if(interactive()){
res_genes <- dgsa_seq(exprmat = y, covariates = x, variables2test = t,

genesets = NULL,
cov_variables2test_eff = matrix(1),
sample_group = rep(1:(r/nr), each=nr),
which_test = 'permutation',
which_weights = 'none', preprocessed = TRUE,
n_perm = 1000, parallel_comp = FALSE)

mean(res_genes$pvals$rawPval < 0.05)
summary(res_genes$pvals$adjPval)
}

14 PBT_gmt

PBT_gmt PBT gene sets related to kidney transplant

Description

9 Pathogenesis Based Transcripts (PBT) gene sets specifically related to kidney transplant

Usage

data(PBT_gmt)

Format

a gmt object containing 9 gene sets specific to kidney transplant (see GSA.read.gmt), which is
simply a list with the 3 following components:

• genesets: a list of n gene identifiers vectors composing eachgene set (each gene set is
represented as the vector of the gene identifiers composing it)

• geneset.names: a vector of length n containing the gene set names (i.e. gene sets identifiers)

• geneset.descriptions: a vector of length n containing gene set descriptions (e.g. textual infor-
mation on their biological function)

Source

http://atagc.med.ualberta.ca/Research/GeneLists

References

Halloran PF, De Freitas DG, Einecke G, et al., The molecular phenotype of kidney transplants:
Personal viewpoint, Am J Transplant, 10: 2215-2222, 2010. .

Sellares J, Reeve J, Loupy A, et al., Molecular diagnosis of antibody-mediated rejection in human
kidney transplants, Am J Transplant, 13:971-983, 2013.

Broin PO, Hayde N, Bao Y, et al., A pathogenesis-based transcript signature in donor-specific
antibody-positive kidney transplant patients with normal biopsies, Genomics Data 2: 357-60, 2014.

Examples

data('PBT_gmt')
PBT_gmt

http://atagc.med.ualberta.ca/Research/GeneLists

permPvals 15

permPvals Exact permutation p-values

Description

Calculates exact p-values for permutation tests when permutations are randomly drawn with re-
placement. This implementation is based on (slightly adapted) the implementation by Belinda
Phipson and Gordon Smyth from the R package statmod

Usage

permPvals(nPermSupObs, nPermEff, totalPossibleNPerm)

Arguments

nPermSupObs number of permutations that yielded test statistics at least as extreme as the
observed data. Can be a vector or an array of values.

nPermEff number of permutations effectively computed.

totalPossibleNPerm

total number of permutations possible.

Value

a vector (or an array, similar to nperm_supobs) of exact p-values

Author(s)

Belinda Phipson and Gordon Smyth (adapted by Boris Hejblum)

References

Phipson B, and Smyth GK (2010). Permutation p-values should never be zero: calculating exact p-
values when permutations are randomly drawn. Statistical Applications in Genetics and Molecular
Biology, Volume 9, Issue 1, Article 39. http://www.statsci.org/smyth/pubs/PermPValuesPreprint.
pdf

See Also

statmod::permp

Examples

permPvals(10, 100, 1000)

http://www.statsci.org/smyth/pubs/PermPValuesPreprint.pdf
http://www.statsci.org/smyth/pubs/PermPValuesPreprint.pdf

16 plot_hist_pvals

plot.dearseq Plot method for dearseq objects

Description

Plot method for dearseq objects

Usage

S3 method for class 'dearseq'
plot(x, signif_threshold = 0.05, ...)

Arguments

x an object of class dear_seq
signif_threshold

a value between 0 and 1 specifying the nominal significance threshold. Default
is 0.05.

... further arguments

Value

a ggplot object

Author(s)

Boris Hejblum

plot_hist_pvals Plotting raw p-values histogram

Description

Display the histogram of raw p-values for diagnostic plots

Usage

plot_hist_pvals(pvals, binwidth = 0.02)

Arguments

pvals a vector of raw p-values

binwidth a value specifying the width of the histogram bins. Default is 0.02.

Value

a ggplot object

plot_ord_pvals 17

Author(s)

Boris Hejblum

Examples

#generate fake data
n <- 1000 #number of genes
nr=5 #number of measurements per subject (grouped data)
ni=50 #number of subjects
r <- nr*ni #number of measurements
t <- matrix(rep(1:nr), ni, ncol=1, nrow=r) # the variable to be tested
sigma <- 0.5
x <- matrix(1, ncol=1, nrow=r) #no covariates only intercept
y.tilde <- rnorm(r, sd = sigma)
y <- t(matrix(rnorm(n*r, sd = sqrt(sigma*abs(y.tilde))), ncol=n, nrow=r) +

matrix(rep(y.tilde, n), ncol=n, nrow=r))

#Run dear_seq()
res_genes <- dear_seq(exprmat=y, covariates=x, variables2test=t,

sample_group=rep(1:ni, each=nr),
which_test = "asymptotic",
which_weights='none', preprocessed=TRUE)

#Plot
plot_hist_pvals(res_genes$pvals$rawPval)

plot_ord_pvals Plot of gene-wise p-values

Description

This function prints the sorted exact p-values along with the Benjamini-Hochberg limit and the 5

Usage

plot_ord_pvals(pvals, signif_threshold = 0.05)

Arguments

pvals a vector of length n containing the raw p-values for each gene

signif_threshold

a value between 0 and 1 specifying the nominal significance threshold. Default
is 0.05.

Value

a plot of sorted gene-wise p-values

18 plot_weights

Examples

#generate fake data
n <- 1000 #number of genes
nr=5 #number of measurements per subject (grouped data)
ni=50 #number of subjects
r <- nr*ni #number of measurements
t <- matrix(rep(1:nr), ni, ncol=1, nrow=r) # the variable to be tested
sigma <- 0.5
x <- matrix(1, ncol=1, nrow=r) #no covariates only intercept
y.tilde <- rnorm(r, sd = sigma)
y <- t(matrix(rnorm(n*r, sd = sqrt(sigma*abs(y.tilde))), ncol=n, nrow=r) +

matrix(rep(y.tilde, n), ncol=n, nrow=r))

#Run dear_seq()
res_genes <- dear_seq(exprmat=y, covariates=x, variables2test=t,

sample_group=rep(1:ni, each=nr),
which_test = "asymptotic",
which_weights='none', preprocessed=TRUE)

#Plot
plot_ord_pvals(res_genes$pvals$rawPval)

plot_weights Plotting mean-variance fit for precision weights estimation

Description

Display the variability with respect to the level of expression and the associated smoothed estimation
of precision weights accounting for heteroscedasticity.

Usage

plot_weights(x)

Arguments

x a list (such as outputed by the functions sp_weights or voom_weights) con-
taining the following components:

• weights: a matrix n x G containing the estimated precision weights
• plot_utilities: a list containing the following elements:

– reverse_trans: a function encoding the reverse function used for
smoothing the observations before computing the weights

– method: the weight computation method (either "voom" or "loclin")
– smth: the vector of the smoothed values computed
– gene_based: a logical indicating whether the computed weights are

based on average at the gene level or on individual observations
– mu: the transformed observed counts or averages
– v: the observed variability estimates

Value

a ggplot object

spaghettiPlot1GS 19

Author(s)

Boris Hejblum

Examples

G <- 10000
n <- 12
p <- 2
y <- sapply(1:n, FUN = function(x){rnbinom(n = G, size = 0.07, mu = 200)})
x <- sapply(1:p, FUN = function(x){rnorm(n = n, mean = n, sd = 1)})

if(interactive()){
w <- sp_weights(y, x, use_phi=FALSE, na.rm = TRUE, gene_based=TRUE)
plot_weights(w)

vw <- voom_weights(y, x)
plot_weights(vw)

}

spaghettiPlot1GS Spaghetti plot for Specific Gene Set

Description

Spaghetti plot for Specific Gene Set

Usage

spaghettiPlot1GS(
gs_index,
gmt,
expr_mat,
design,
var_time,
var_indiv,
sampleIdColname,
var_group = NULL,
var_subgroup = NULL,
plotChoice = c("Medians", "Individual"),
loess_span = 0.75

)

Arguments

gs_index index of the specific gene set in gmt.

gmt a list of elements: geneset, geneset.name and geneset.description (see
GSA.read.gmt).

expr_mat a data.frame with numerics of size G x n contraining the raw RNA-seq counts
from n samples for G genes.

design a data.frame or DFrame containing the information of each sample (SampleID).

20 sp_weights

var_time the time or visit variable contained in design.
var_indiv the patient variable contained in design data.
sampleIdColname

a character string indicating the name of the sample ID variable in design to be
matched with the colnames of expr_mat

var_group a group variable in design data to divide into two facets. Default is NULL.
var_subgroup a subgroup variable in design data to add 2 curves on plot for each subgroup.

Default is NULL.
plotChoice to choose which type of plot (either "Medians", "Individual" or both). De-

fault is c("Medians", "Individual").
loess_span smoothing span. Default is 0.75.

Value

a ggplot2 plot object

Examples

data(baduel_5gs)
design$Indiv <- design$Population:design$Replicate
design$Vern <- ifelse(design$Vernalized, "Vernalized", "Non-vernalized")

library(ggplot2)
spaghettiPlot1GS(gs_index = 3, gmt = baduel_gmt, expr_mat = log2(expr_norm_corr+1),

design = design, var_time = AgeWeeks, var_indiv = Indiv,
sampleIdColname = "sample", var_group=Vern, var_subgroup=Population,
plotChoice = "Medians", loess_span= 1.5) +
xlab("Age (weeks)") + guides(color= "none")

sp_weights Non parametric local heteroscedasticity weights

Description

Computes precision weights that account for heteroscedasticity in RNA-seq count data based on
non-parametric local linear regression estimates.

Usage

sp_weights(
y,
x,
phi = NULL,
use_phi = TRUE,
preprocessed = FALSE,
gene_based = FALSE,
bw = c("nrd", "ucv", "SJ", "nrd0", "bcv"),
kernel = c("gaussian", "epanechnikov", "rectangular", "triangular", "biweight",

"tricube", "cosine", "optcosine"),
transform = TRUE,
verbose = TRUE,
na.rm = FALSE

)

sp_weights 21

Arguments

y a numeric matrix of size G x n containing the raw RNA-seq counts or prepro-
cessed expression from n samples for G genes.

x a numeric matrix of size n x p containing the model covariate(s) from n samples
(design matrix).

phi a numeric design matrix of size n x K containing the K variable(s) of interest(
e.g. bases of time).

use_phi a logical flag indicating whether conditional means should be conditioned on
phi and on covariate(s) x, or on x alone. Default is TRUE in which case condi-
tional means are estimated conditionally on both x and phi.

preprocessed a logical flag indicating whether the expression data have already been prepro-
cessed (e.g. log2 transformed). Default is FALSE, in which case y is assumed to
contain raw counts and is normalized into log(counts) per million.

gene_based a logical flag indicating whether to estimate weights at the gene-level. Default
is FALSE, when weights will be estimated at the observation-level.

bw a character string indicating the smoothing bandwidth selection method to use.
See bandwidth for details. Possible values are 'ucv', 'SJ', 'bcv', 'nrd' or
'nrd0'. Default is 'nrd'.

kernel a character string indicating which kernel should be used. Possibilities are
'gaussian', 'epanechnikov', 'rectangular', 'triangular', 'biweight',
'tricube', 'cosine', 'optcosine'. Default is 'gaussian' (NB: 'tricube'
kernel corresponds to the loess method).

transform a logical flag indicating whether values should be transformed to uniform for the
purpose of local linear smoothing. This may be helpful if tail observations are
sparse and the specified bandwidth gives suboptimal performance there. Default
is TRUE.

verbose a logical flag indicating whether informative messages are printed during the
computation. Default is TRUE.

na.rm logical: should missing values (including NA and NaN) be omitted from the cal-
culations? Default is FALSE.

Value

a list containing the following components:

• weights: a matrix n x G containing the computed precision weights

• plot_utilities: a list containing the following elements:

– reverse_trans: a function encoding the reverse function used for smoothing the obser-
vations before computing the weights

– method: the weight computation method ("loclin")
– smth: the vector of the smoothed values computed
– gene_based: a logical indicating whether the computed weights are based on average at

the gene level or on individual observations
– mu: the transformed observed counts or averages
– v: the observed variability estimates

Author(s)

Boris Hejblum

22 summary.dearseq

See Also

bandwidth density

Examples

set.seed(123)

G <- 10000
n <- 12
p <- 2
y <- sapply(1:n, FUN = function(x){rnbinom(n = G, size = 0.07, mu = 200)})

x <- sapply(1:p, FUN = function(x){rnorm(n = n, mean = n, sd = 1)})

w <- sp_weights(y, x, use_phi=FALSE, na.rm = TRUE)

summary.dearseq Summary method for dearseq objects

Description

Summary method for dearseq objects

Usage

S3 method for class 'dearseq'
summary(object, signif_threshold = 0.05, ...)

S3 method for class 'summary.dearseq'
print(x, ...)

Arguments

object an object of class dear_seq
signif_threshold

a value between 0 and 1 specifying the nominal significance threshold. Default
is 0.05.

... further arguments

x an object of class ’summary.dearseq’.

Value

a list

Author(s)

Boris Hejblum

vc_score 23

vc_score Computes variance component score test statistics

Description

This function computes the variance component score test statistics

Usage

vc_score(y, x, indiv, phi, w, Sigma_xi = diag(ncol(phi)), na_rm = FALSE)

Arguments

y a numeric matrix of dim g x n containing the raw RNA-seq counts for g genes
from n samples.

x a numeric design matrix of dim n x p containing the p covariates to be adjusted
for.

indiv a vector of length n containing the information for attributing each sample to
one of the studied individuals. Coerced to be a factor.

phi a numeric design matrix of size n x K containing the K variables to .be tested

w a vector of length n containing the weights for the n samples.

Sigma_xi a matrix of size K x K containing the covariance matrix of the K random effects
on phi.

na_rm logical: should missing values (including NA and NaN) be omitted from the cal-
culations? Default is FALSE.

Value

A list with the following elements:

• score: approximation of the set observed score

• q: observation-level contributions to the score

• q_ext: pseudo-observations used to compute the covariance, taking into account the contri-
butions of OLS estimates

• gene_scores_unscaled: a vector of the approximations of the individual gene scores

Examples

set.seed(123)

##generate some fake data
########################
n <- 100
r <- 12
t <- matrix(rep(1:3), r/3, ncol=1, nrow=r)
sigma <- 0.4
b0 <- 1

#under the null:
b1 <- 0

24 vc_score_h

#under the alternative:
b1 <- 0.7
y.tilde <- b0 + b1*t + rnorm(r, sd = sigma)
y <- t(matrix(rnorm(n*r, sd = sqrt(sigma*abs(y.tilde))), ncol=n, nrow=r) +

matrix(rep(y.tilde, n), ncol=n, nrow=r))
x <- matrix(1, ncol=1, nrow=r)

#run test
scoreTest <- vc_score(y, x, phi=t, w=matrix(1, ncol=ncol(y), nrow=nrow(y)),

Sigma_xi=matrix(1), indiv=rep(1:(r/3), each=3))
scoreTest$score

vc_score_h Computes variance component score test statistic for homogeneous
trajectories

Description

This function computes the variance component score test statistics for homogeneous trajectories

Usage

vc_score_h(y, x, indiv, phi, w, Sigma_xi = diag(ncol(phi)), na_rm = FALSE)

Arguments

y a numeric matrix of dim g x n containing the raw or normalized RNA-seq counts
for g genes from n samples.

x a numeric design matrix of dim n x p containing the p covariates to be adjusted
for.

indiv a vector of length n containing the information for attributing each sample to
one of the studied individuals. Coerced to be a factor.

phi a numeric design matrix of size n x K containing the K longitudinal variables to
be tested (typically a vector of time points or functions of time).

w a vector of length n containing the weights for the n samples, corresponding to
the inverse of the diagonal of the estimated covariance matrix of y.

Sigma_xi a matrix of size K x K containing the covariance matrix of the K random effects
corresponding to phi.

na_rm logical: should missing values (including NA and NaN) be omitted from the cal-
culations? Default is FALSE.

Value

A list with the following elements:

• score: approximation of the set observed score

• q: observation-level contributions to the score

• q_ext: pseudo-observations used to compute covariance taking into account the contributions
of OLS estimates

• gene_scores: approximation of the individual gene scores

vc_score_h 25

Examples

set.seed(123)

##generate some fake data
########################
ng <- 100
nindiv <- 30
nt <- 5
nsample <- nindiv*nt
tim <- matrix(rep(1:nt), nindiv, ncol=1, nrow=nsample)
tim2 <- tim^2
sigma <- 5
b0 <- 10

#under the null:
beta1 <- rnorm(n=ng, 0, sd=0)
#under the (heterogen) alternative:
beta1 <- rnorm(n=ng, 0, sd=0.1)
#under the (homogen) alternative:
beta1 <- rnorm(n=ng, 0.06, sd=0)

y.tilde <- b0 + rnorm(ng, sd = sigma)
y <- t(matrix(rep(y.tilde, nsample), ncol=ng, nrow=nsample, byrow=TRUE) +

matrix(rep(beta1, each=nsample), ncol=ng, nrow=nsample, byrow=FALSE) *
matrix(rep(tim, ng), ncol=ng, nrow=nsample, byrow=FALSE) +

#matrix(rep(beta1, each=nsample), ncol=ng, nrow=nsample, byrow=FALSE) *
matrix(rep(tim2, ng), ncol=ng, nrow=nsample, byrow=FALSE) +
matrix(rnorm(ng*nsample, sd = sigma), ncol=ng, nrow=nsample,

byrow=FALSE)
)

myindiv <- rep(1:nindiv, each=nt)
x <- cbind(1, myindiv/2==floor(myindiv/2))
myw <- matrix(rnorm(nsample*ng, sd=0.1), ncol=nsample, nrow=ng)

#run test
score_homogen <- vc_score_h(y, x, phi=tim, indiv=myindiv,

w=myw, Sigma_xi=cov(tim))
score_homogen$score

score_heterogen <- vc_score(y, x, phi=tim, indiv=myindiv,
w=myw, Sigma_xi=cov(tim))

score_heterogen$score

scoreTest_homogen <- vc_test_asym(y, x, phi=tim, indiv=rep(1:nindiv, each=nt),
w=matrix(1, ncol=ncol(y), nrow=nrow(y)),
Sigma_xi=cov(tim),
homogen_traj = TRUE)

scoreTest_homogen$set_pval
scoreTest_heterogen <- vc_test_asym(y, x, phi=tim, indiv=rep(1:nindiv,

each=nt),
w=matrix(1, ncol=ncol(y), nrow=nrow(y)),
Sigma_xi=cov(tim),
homogen_traj = FALSE)

scoreTest_heterogen$set_pval

26 vc_score_h_perm

vc_score_h_perm Computes variance component score test statistics for homogeneous
trajectory and its permuted distribution

Description

This function computes the variance component score test statistics for homogeneous trajectories
along with its permuted values for estimating its distribution under the null hypothesis.

Usage

vc_score_h_perm(
y,
x,
indiv,
phi,
w,
Sigma_xi = diag(ncol(phi)),
na_rm = FALSE,
n_perm = 1000,
progressbar = TRUE,
parallel_comp = TRUE,
nb_cores = parallel::detectCores(logical = FALSE) - 1

)

Arguments

y a numeric matrix of dim g x n containing the raw or normalized RNA-seq counts
for g genes from n samples.

x a numeric design matrix of dim n x p containing the p covariates to be adjusted
for.

indiv a vector of length n containing the information for attributing each sample to
one of the studied individuals. Coerced to be a factor.

phi a numeric design matrix of size n x K containing the K longitudinal variables to
be tested (typically a vector of time points or functions of time).

w a vector of length n containing the weights for the n samples, corresponding to
the inverse of the diagonal of the estimated covariance matrix of y.

Sigma_xi a matrix of size K x K containing the covariance matrix of the K random effects
corresponding to phi.

na_rm logical: should missing values (including NA and NaN) be omitted from the cal-
culations? Default is FALSE.

n_perm the number of permutation to perform. Default is 1000.

progressbar logical indicating wether a progressBar should be displayed when computing
permutations (only in interactive mode).

parallel_comp a logical flag indicating whether parallel computation should be enabled. Only
Linux and MacOS are supported, this is ignored on Windows. Default is TRUE.

nb_cores an integer indicating the number of cores to be used when parallel_comp is
TRUE. Default is parallel::detectCores(logical=FALSE) - 1.

vc_score_h_perm 27

Value

A list with the following elements:

• score: an approximation of the observed set score

• scores_perm: a vector containing the permuted set scores

• gene_scores_unscaled: approximation of the individual gene scores

• gene_scores_unscaled_perm: a list of approximation of the permuted individual gene scores

Examples

set.seed(123)

##generate some fake data
########################
ng <- 100
nindiv <- 30
nt <- 5
nsample <- nindiv*nt
tim <- matrix(rep(1:nt), nindiv, ncol=1, nrow=nsample)
tim2 <- tim^2
sigma <- 5
b0 <- 10

#under the null:
beta1 <- rnorm(n=ng, 0, sd=0)
#under the (heterogen) alternative:
beta1 <- rnorm(n=ng, 0, sd=0.1)
#under the (homogen) alternative:
beta1 <- rnorm(n=ng, 0.06, sd=0)

y.tilde <- b0 + rnorm(ng, sd = sigma)
y <- t(matrix(rep(y.tilde, nsample), ncol=ng, nrow=nsample, byrow=TRUE) +

matrix(rep(beta1, each=nsample), ncol=ng, nrow=nsample, byrow=FALSE) *
matrix(rep(tim, ng), ncol=ng, nrow=nsample, byrow=FALSE) +

#matrix(rep(beta1, each=nsample), ncol=ng, nrow=nsample, byrow=FALSE) *
matrix(rep(tim2, ng), ncol=ng, nrow=nsample, byrow=FALSE) +
matrix(rnorm(ng*nsample, sd = sigma), ncol=ng, nrow=nsample,

byrow=FALSE)
)

myindiv <- rep(1:nindiv, each=nt)
x <- cbind(1, myindiv/2==floor(myindiv/2))
myw <- matrix(rnorm(nsample*ng, sd=0.1), ncol=nsample, nrow=ng)

#run test
#We only use few permutations (10) to keep example running time low
#Otherwise one can use n_perm = 1000
score_homogen <- vc_score_h_perm(y, x, phi=tim, indiv=myindiv,

w=myw, Sigma_xi=cov(tim), n_perm = 10,
parallel_comp = FALSE)

score_homogen$score

score_heterogen <- vc_score_perm(y, x, phi=tim, indiv=myindiv,
w=myw, Sigma_xi=cov(tim), n_perm = 10,
parallel_comp = FALSE)

score_heterogen$score

28 vc_score_perm

scoreTest_homogen <- vc_test_asym(y, x, phi=tim, indiv=rep(1:nindiv, each=nt),
w=matrix(1, ncol=ncol(y), nrow=nrow(y)),
Sigma_xi=cov(tim), homogen_traj = TRUE)

scoreTest_homogen$set_pval
scoreTest_heterogen <- vc_test_asym(y, x, phi=tim, indiv=rep(1:nindiv,

each=nt),
w=matrix(1, ncol=ncol(y), nrow=nrow(y)),
Sigma_xi=cov(tim), homogen_traj = FALSE)

scoreTest_heterogen$set_pval

vc_score_perm Computes variance component score test statistics and its permuted
distribution

Description

This function computes the variance component score test statistics along with its permuted values
for estimating its distribution under the null hypothesis.

Usage

vc_score_perm(
y,
x,
indiv,
phi,
w,
Sigma_xi = diag(ncol(phi)),
na_rm = FALSE,
n_perm = 1000,
progressbar = TRUE,
parallel_comp = TRUE,
nb_cores = parallel::detectCores(logical = FALSE) - 1

)

Arguments

y a numeric matrix of dim g x n containing the raw RNA-seq counts for g genes
from n samples

x a numeric design matrix of dim n x p containing the p covariates to be adjusted
for

indiv a vector of length n containing the information for attributing each sample to
one of the studied individuals. Coerced to be a factor

phi a numeric design matrix of size n x K containing the K variables to be tested.

w a vector of length n containing the weights for the n samples.

Sigma_xi a matrix of size K x K containing the covariance matrix of the K random effects
on phi

na_rm logical: should missing values (including NA and NaN) be omitted from the cal-
culations? Default is FALSE.

vc_score_perm 29

n_perm the number of permutation to perform. Default is 1000.

progressbar logical indicating wether a progressBar should be displayed when computing
permutations (only in interactive mode).

parallel_comp a logical flag indicating whether parallel computation should be enabled. Only
Linux and MacOS are supported, this is ignored on Windows. Default is TRUE.

nb_cores an integer indicating the number of cores to be used when parallel_comp is
TRUE. Default is parallel::detectCores(logical=FALSE) - 1.

Value

A list with the following elements:

• score: an approximation of the observed set score

• scores_perm: a vector containing the permuted set scores

• gene_scores_unscaled: approximation of the individual gene scores

• gene_scores_unscaled_perm: a list of approximationq of the permuted individual gene
scores

Examples

set.seed(123)

##generate some fake data
########################
n <- 100
r <- 12
t <- matrix(rep(1:3), r/3, ncol=1, nrow=r)
sigma <- 0.4
b0 <- 1

#under the null:
b1 <- 0
#under the alternative:
b1 <- 0.7
y.tilde <- b0 + b1*t + rnorm(r, sd = sigma)
y <- t(matrix(rnorm(n*r, sd = sqrt(sigma*abs(y.tilde))), ncol=n, nrow=r) +

matrix(rep(y.tilde, n), ncol=n, nrow=r))
x <- matrix(1, ncol=1, nrow=r)

#run test
scoreTest <- vc_score_perm(y, x, phi=t, w=matrix(1, ncol=ncol(y),

nrow=nrow(y)),
Sigma_xi=matrix(1), indiv=rep(1:(r/3), each=3),
parallel_comp = FALSE)

scoreTest$score

30 vc_test_asym

vc_test_asym Asymptotic variance component test statistic and p-value

Description

This function computes an approximation of the variance component test based on the asymptotic
distribution of a mixture of χ2s using the saddlepoint method from pchisqsum, as per Chen &
Lumley 20219 CSDA.

Usage

vc_test_asym(
y,
x,
indiv = rep(1, nrow(x)),
phi,
w,
Sigma_xi = diag(ncol(phi)),
genewise_pvals = FALSE,
homogen_traj = FALSE,
na.rm = FALSE

)

Arguments

y a numeric matrix of dim g x n containing the raw or normalized RNA-seq counts
for g genes from n samples.

x a numeric design matrix of dim n x p containing the p covariates to be adjusted
for

indiv a vector of length n containing the information for attributing each sample to
one of the studied individuals. Coerced to be a factor.

phi a numeric design matrix of size n x K containing the K longitudinal variables to
be tested (typically a vector of time points or functions of time)

w a vector of length n containing the weights for the n samples, corresponding to
the inverse of the diagonal of the estimated covariance matrix of y.

Sigma_xi a matrix of size K x K containing the covariance matrix of the K random effects
corresponding to phi.

genewise_pvals a logical flag indicating whether gene-wise p-values should be returned. Default
is FALSE in which case gene set p-value is computed and returned instead.

homogen_traj a logical flag indicating whether trajectories should be considered homogeneous.
Default is FALSE in which case trajectories are not only tested for trend, but also
for heterogeneity.

na.rm logical: should missing values (including NA and NaN) be omitted from the cal-
culations? Default is FALSE.

vc_test_asym 31

Value

A list with the following elements when the set p-value is computed:

• set_score_obs: the approximation of the observed set score

• set_pval: the associated set p-value

or a list with the following elements when gene-wise p-values are computed:

• gene_scores_obs: vector of approximating the observed gene-wise scores

• gene_pvals: vector of associated gene-wise p-values

References

Chen T & Lumley T (2019), Numerical evaluation of methods approximating the distribution of a
large quadratic form in normal variables, Computational Statistics & Data Analysis, 139:75-81.

See Also

pchisqsum

Examples

set.seed(123)

##generate some fake data
########################
n <- 100
r <- 12
t <- matrix(rep(1:(r/4)), 4, ncol=1, nrow=r)
sigma <- 0.4
b0 <- 1

#under the null:
b1 <- 0
#under the alternative:
#b1 <- 0.5
y.tilde <- b0 + b1*t + rnorm(r, sd = sigma)
y <- t(matrix(rnorm(n*r, sd = sqrt(sigma*abs(y.tilde))), ncol=n, nrow=r) +

matrix(rep(y.tilde, n), ncol=n, nrow=r))
x <- matrix(1, ncol=1, nrow=r)

#run test
asymTestRes <- vc_test_asym(y, x, phi=cbind(t, t^2),

w=matrix(1, ncol=ncol(y), nrow=nrow(y)),
Sigma_xi=diag(2), indiv=1:r, genewise_pvals=TRUE)

plot(density(asymTestRes$gene_pvals))
quantile(asymTestRes$gene_pvals)

32 vc_test_perm

vc_test_perm Permutation-based variance component test statistic and p-value

Description

This function computes an approximation of the Variance Component test for a mixture of χ2s
using permutations. This is preferable to the asymptotic approximation for small sample sizes. We
rely on exact p-values following Phipson and Smyth, 2010 (see References).

Usage

vc_test_perm(
y,
x,
indiv = rep(1, nrow(x)),
phi,
w,
Sigma_xi = diag(ncol(phi)),
n_perm = 1000,
progressbar = TRUE,
parallel_comp = TRUE,
nb_cores = parallel::detectCores(logical = FALSE) - 1,
genewise_pvals = FALSE,
adaptive = TRUE,
max_adaptive = 64000,
homogen_traj = FALSE,
na.rm = FALSE

)

Arguments

y a numeric matrix of dim G x n containing the raw RNA-seq counts for G genes
from n samples.

x a numeric design matrix of dim n x p containing the p covariates to be adjusted
for.

indiv a vector of length n containing the information for attributing each sample to
one of the studied individuals. Coerced to be a factor.

phi a numeric design matrix of size n x K containing the K variables to be tested

w a vector of length n containing the weights for the n samples.

Sigma_xi a matrix of size K x K containing the covariance matrix of the K random effects.

n_perm the number of perturbations. Default is 1000.

progressbar logical indicating wether a progressBar should be displayed when computing
permutations (only in interactive mode).

parallel_comp a logical flag indicating whether parallel computation should be enabled. Only
Linux and MacOS are supported, this is ignored on Windows. Default is TRUE.

nb_cores an integer indicating the number of cores to be used when parallel_comp is
TRUE. Default is parallel::detectCores(logical=FALSE) - 1.

vc_test_perm 33

genewise_pvals a logical flag indicating whether gene-wise p-values should be returned. Default
is FALSE in which case gene-set p-value is computed and returned instead.

adaptive a logical flag indicating whether adaptive permutation should be performed. De-
fault is TRUE

max_adaptive The maximum number of permutations considered. Default is 64000

homogen_traj a logical flag indicating whether trajectories should be considered homogeneous.
Default is FALSE in which case trajectories are not only tested for trend, but also
for heterogeneity.

na.rm logical: should missing values (including NA and NaN) be omitted from the cal-
culations? Default is FALSE.

Value

A list with the following elements when the set p-value is computed:

• set_score_obs: the approximation of the observed set score

• set_pval: the associated set p-value

or a list with the following elements when gene-wise p-values are computed:

• gene_scores_obs: vector of approximating the observed gene-wise scores

• gene_pvals: vector of associated gene-wise p-values

• ds_fdr: vector of associated gene-wise discrete false discovery rates

References

Phipson B, and Smyth GK (2010). Permutation p-values should never be zero: calculating exact p-
values when permutations are randomly drawn. Statistical Applications in Genetics and Molecular
Biology, Volume 9, Issue 1, Article 39. http://www.statsci.org/smyth/pubs/PermPValuesPreprint.
pdf

Examples

set.seed(123)

##generate some fake data
########################
n <- 100
r <- 12
t <- matrix(rep(1:3), 4, ncol=1, nrow=r)
sigma <- 0.4
b0 <- 1

#under the null:
b1 <- 0
#under the alternative:
b1 <- 0.5
y.tilde <- b0 + b1*t + rnorm(r, sd = sigma)
y <- t(matrix(rnorm(n*r, sd = sqrt(sigma*abs(y.tilde))), ncol=n, nrow=r) +

matrix(rep(y.tilde, n), ncol=n, nrow=r))
x <- matrix(1, ncol=1, nrow=r)

#run test
permTestRes <- vc_test_perm(y, x, phi=t,

http://www.statsci.org/smyth/pubs/PermPValuesPreprint.pdf
http://www.statsci.org/smyth/pubs/PermPValuesPreprint.pdf

34 voom_weights

w=matrix(1, ncol=ncol(y), nrow=nrow(y)),
indiv=rep(1:4, each=3), n_perm=50, #1000,
parallel_comp = FALSE)

permTestRes$set_pval

voom_weights Precision weights accounting for heteroscedasticity in RNA-seq count
data

Description

Implementation of the procedure described in Law et al. for estimating precision weights from
RNA-seq data.

Usage

voom_weights(y, x, preprocessed = FALSE, lowess_span = 0.5, R = NULL)

Arguments

y a matrix of size G x n containing the raw RNA-seq counts or preprocessed ex-
pressions from n samples for G genes.

x a matrix of size n x p containing the model covariates from n samples (design
matrix).

preprocessed a logical flag indicating whether the expression data have already been prepro-
cessed (e.g. log2 transformed). Default is FALSE, in which case y is assumed to
contain raw counts and is normalized into log(counts) per million.

lowess_span smoother span for the lowess function, between 0 and 1. This gives the pro-
portion of points in the plot which influence the smooth at each value. Larger
values give more smoothness. Default is 0.5.

R library.size (optional, important to provide if preprocessed = TRUE). Default is
NULL

Value

a vector of length n containing the computed precision weights

Author(s)

Boris Hejblum

References

Law, C. W., Chen, Y., Shi, W., & Smyth, G. K. (2014). voom: Precision weights unlock linear
model analysis tools for RNA-seq read counts. Genome Biology, 15(2), R29.

See Also

lowess approxfun voom

%^% 35

Examples

set.seed(123)

G <- 10000
n <- 12
p <- 2

y <- sapply(1:n, FUN=function(x){rnbinom(n=G, size=0.07, mu=200)})
x <- sapply(1:p, FUN=function(x){rnorm(n=n, mean=n, sd=1)})

my_w <- voom_weights(y, x)
plot_weights(my_w)
if (requireNamespace('limma', quietly = TRUE)) {
w_voom <- limma::voom(counts=y, design=x, plot=TRUE)
#slightly faster, same results
all.equal(my_w$weights, w_voom$weights)

}

if(interactive()){
#microbenchmark::microbenchmark(limma::voom(counts=t(y), design=x,
plot=FALSE), voom_weights(x, y),
times=30)
}

%^% Power for covaroances matrices

Description

Compute the power of a positive definite symmetric

Usage

x %^% n

Arguments

x a positive definite symmetric matrix

n a real number

Value

a matrix of the same dimensions as x

Index

∗ datasets
baduel_5gs, 3
PBT_gmt, 14

∗ internal
%^%, 35
vc_score, 23
vc_score_h, 24
vc_score_h_perm, 26
vc_score_perm, 28

%^%, 35

approxfun, 34

baduel (baduel_5gs), 3
baduel_5gs, 3
baduel_gmt (baduel_5gs), 3
bandwidth, 7, 11, 21, 22
BiocSet, 11

dear_seq, 3, 5
dearseq (dearseq-package), 2
dearseq-package, 2
density, 22
DESeqDataSet, 6, 10
design (baduel_5gs), 3
DGEList, 6, 10
dgsa_seq, 3, 9

expr_norm_corr (baduel_5gs), 3
ExpressionSet, 6, 10

ggplot, 16, 18
gmt, 11
GSA.read.gmt, 4, 14, 19

lowess, 34

p.adjust, 8, 12
PBT (PBT_gmt), 14
PBT_gmt, 14
pchisqsum, 30, 31
permPvals, 15
plot.dearseq, 16
plot_hist_pvals, 16
plot_ord_pvals, 17

plot_weights, 18
print.summary.dearseq

(summary.dearseq), 22

sp_weights, 6, 8, 11, 12, 18, 20
spaghettiPlot1GS, 19
SummarizedExperiment, 6, 10
summary.dearseq, 22

vc_score, 23
vc_score_h, 24
vc_score_h_perm, 26
vc_score_perm, 28
vc_test_asym, 8, 12, 30
vc_test_perm, 8, 12, 32
voom, 34
voom_weights, 6, 11, 18, 34

36

	dearseq-package
	baduel_5gs
	dear_seq
	dgsa_seq
	PBT_gmt
	permPvals
	plot.dearseq
	plot_hist_pvals
	plot_ord_pvals
	plot_weights
	spaghettiPlot1GS
	sp_weights
	summary.dearseq
	vc_score
	vc_score_h
	vc_score_h_perm
	vc_score_perm
	vc_test_asym
	vc_test_perm
	voom_weights
	^
	Index

